
AD-All? III MICHIGAN UNIV ANN AMhON SYSTEMS ENGINEIRING LAS P/0 9/2
VECTOClZSD SPARSE ILIMINATION. (U)
MAY &A 0 A CALANAN AFOSR-80-01S

UNCLASSIFIED AFOSR-TR-B2-0553 4.



.FS-R 
8

- .A. 82-0553

Interim Technical Report
for Period 5-1-81 to 4-30-82

Grant([-AFOSR-80-01568

VECTORIZED SPARSE ELIMINATION

D. A. Calahan
Principal Investigator

Systems Engineering Laboratory
University of Michigan

Ann Arbor, MI
April 15. 1982

x.*

L-

Approved for publio reles e
distribution unlimited.

82 07 J9 040



: AIR FORM 01FFICE w SCIENIFIC RSEARC (A.'SC)

NOTICE DF TRANSMITTAL TO DTIC
This technical report has been reviewed and is
approved for pvTblic rele'se IAW AFR 190-12.
Distribution is unlimited.

A INTRODUCTION MAMW J. MEPER
Chief, Technical Information Division

Figure 1 indicates how the single topic of general sparse matrix solution using

scalar processors may be broken into specialized areas of study when implementation

on vector architectures is considered.

First, highly sparse matrices, usually representing ODE/algebraic-modeled sys-

tems, are easily decoupled by re-ordering. At a minimum, locally-decoupled equations

may be solved in pipelined scalar mode (see below); if the decoupled subsystems can

be arranged (a) to have identical sparsity, and (b) to be stored a constant stride apart.

then a simultaneous sparse solver [7] may be invoked and a vector solution obtained.

As sparse systems become locally coupled - as occurs in finite element and finite

difference problems - then vectors are easily defined within the coupled subsystems. It

is worth making a further distinction between

(a) intra-nodal or intra-element coupling, where the dimension of dense sub-

matrices is proportional to the number of unknowns/node or unknowns/finite

element, and

(b) inter-nodal or inter-element, where the coupling between grid nodes or

finite elements determines the vector length.

Banded and profile matrices result from the latter. The associated vector lengths

are the products of the number of unknown/node (element) and the number of coupled

nodes. These lengths are therefore always longer than in the former case, so that com-

mon bandsolvers offer the highest performance of any sparse solvers.

In previous research, algorithms and CRAY-1 software have been developed on this

grant for (Figure I)

(a) general sparse matrices [10],

(b) patterned sparse matrices, in conjunction with a vectorized electronic



circuit analysis program [7][11], and

(c) blocked matrices arising from intra-nodal coupling [8].

In addition, Duff and Reid [9] have converted a Fortran frontal ("intra-element") solver

to the CRAY-I.
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for current study.

UNPATTERNED

A highly- and randomly-sparse matrix necessitates a scalar solution. Even so, an

ordering (in the spirit of nested dissection) can be found such that the LU factors can

be written in the form

D11 U12

Dpj U2 3

/'sj Dss

where D* is a diagonal matrix and L4 and Ult extend from Pit to the matrix boundary.

The ordered steps to reduce the rth pivot block are

Dw <- D,. (reciprocation) (1)

U Or+l < Dr4.,+i (multiplication) (2)

Apr+ t+ <" r+i r+i ., U.r*i (multi. /subtraction) (3)

' . ... . 1



where Ar.r+ represents the unreduced southeast corner of the matrix at the rth

reduction step. These steps can be performed in three parallel or pipelined steps.

Because all of the above operations are on blocks with random sparsity and

storage, they must be performed in scalar mode. We have elected to achieve the

highest speed by generating loopless scalar solution code in the manner of Gustavson

[12],.although this limits the matrix size to perhaps 5,000 highly-sparse equations.

Rates in the range of 15 MFLOPS on the CRAY-I are readily achievable, a speedup of 5:1

to 10:1 over other implementations. A report and a paper are currently in preparation

on these equation ordering and implementation methods.

BANDED/PROFILE

It has become popular among researchers recently studying the solution of 2-D

grids by general sparse solvers on the CRAY-I to quibble about the quality of software

operating in the range of 5-20 MFLOPS. Yet it is well known that banded solution of

such grids is possible in the range of 90 MFLOPS [13]. It was therefore deemed desir-

able to develop a high-performance bandsolver as a standard for comparison with

lower-performance general sparsity software. General sparsity software would then be

useful only if the reduced operation counts associated with optimal ordering could

compensate for the higher performance of a banded solver. This bandsolver was com-

pleted in the Fall of 1981. Careful CAL coding using a CRAY-1 simulator resulted in a

1.3:1 to 2:1 speedups over the best previous (Los Alamos) coding, to over 117 MFLOPS.

It is wen-known that factors of up to four In operation count may be achieved in

banded solutions of common irregular grid structures by following the bandwidth pro-

file. Unfortunately, the pointers to describe this profile constitute a serious overhead

in the inner loops of the vectorized reduction algorithm. It was therefore decided to

block the profile parallel to the diagonal (Figure 2). Diagonal blocking is natural to 2-D



grid solution, and so introduces few extra computations, it also migrates the symbolic

pointers to the outer loops, since block descriptors point at large matrix substruc-

tures. Overall, this appears to be the best compromise between the operation count

efficiency of general sparsity methods and the vectorizability of banded solution.

Software has been developed for the CRAY-l to solved banded and profile systems

[2][5] and has been included in a library of sparse equation solvers classified in Figure

1 and directed at general and specialized sparsity structures. (These solvers will be

presented at a forthcoming sparse matrix conference in Fall, 1982.) A symmetric

matrix version of this software is intended to be developed with joint AFFDL support; it

will be used to solve optimization problems in the structural aspects of wing design.

Also, optimal blocking strategies are being studied, based on a timing model

(developed using a CRAY-I simulator) of the solution code.

2 OTHER PROGRESS

SCHEDULING

It was observed during the development of high performance equation solvers for

the CRAY-I that optimality of the implementation could not be guaranteed. It

appeared, however, that the CRAY-i architecture could be described as a mathematical

programming problem. Consistent with our investment in other program development

aids, this optimizer is being developed into a useful package and is apparently of

interest to others with desire for truly optimal codings. Moreover, a related confer-

ence presentation has been made [3]. a journal manuscript is being prepared. anda

Ph.D. thesis is being written on this work.

ELECTRONIC CIRCUIT ANALYSIS



Because our multi-level sparse matrix algorithms are the basis of the Berkeley

effort to vectorize their popular SPICE electronic circuit analysis program, it is worth

reporting that their AFOSR-funded project is producing speedups of 8:1 over the origi-

nal scalar code for "small" (288-transistor) circuits. Larger speedups are expected

with larger circuits that yield longer vectors. A preliminary version of the revised

17000-statement program is expected to be released this summer.

C. COUPLING ACTIVITIES

1. SEMINARS

A review of our vector processing research was presented at the AFFDL.

2. CONSULTING

(a) Visiting scientist, AFFDL, to vectorized an explicit Navier-Stokes codes on

the CYBER 205 and to study any associated I/O problems (-9/30/82).

(b) Visiting scientist, LANL, on vectorized Monte Carlo (5/1/81-4/30/82).

(c) Industrial consultant, Mobil Research and Development, on supercomputer

procurement evaluation (5/1/81-1/15/82),

(d) Industrial consultant, Chevron Oil Field Research Co., on organization of

vectorized sparse matrix algorithms (2/82).

3. OTHER

(a) A one-week short course at the University was presented in August, 1981,

on High Speed Computation.

(b) Evaluation of proposals for the NASA Numerical Aerodynamic Simulator

(NAS) was initiated, as an appointed member of a Technical Review Board

(4/1/82)
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Figure 1

HIERARCHY AND CLASSIFICATION OF SPARSE MATRIX SOFTWARE

GENERAL SPARSEi

.25 - 35 MFLOPS

IDECOUPLINGi KING

PATTERNED; UNPATTERNED; RECTANGULARJ DIAGONAL;

SIMULTANEOUS SPARSE CHEDULED SCALAR INTRANODAL & INTERNODAL;
SOLVER; SOLVER INTRA-ELEMENT BLOCKED PROFILE

- 70 MFLOPS 15 MFLOPS - 141 MFLOPS - 126 MFLOPS



Figure 2. Block profile

matrix of irregular finite

difference grid.
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